Yiyu Wang

yiyuwang22@gmail.com / 206-434-0636 https://yiyuwang.github.io/

EDUCATION

Northeastern University, Boston MA		09/2018 - Pres.
Ph.D., Psychology (expected 2023)	Advisor: Ajay Satpute Ph.D.	
University of Washington, Seattle WA		09/2013 - 06/2017
B.S. Psychology	College Honors, GPA: 3.74/4.0	
RESEARCH EXPERIENCE		
Developing Neural Topographic Factor Ana	lysis (NTFA), Northeastern University	09/2018 - Pres.
 Incorporated neural networks and matr variation in fMRI neural activities in P 	ix factorization methods to model individual ython and PyTorch	and content
• Reduced dimensionality of fMRI time	series data with interpretable low-dimension	al embeddings
 Added an individual by content interac individual variability 	tion embedding to account for both between	and within
• Incorporated clustering methods to det	ermine brain states in the embedding space	
• Collaborated with an interdisciplinary	team including engineers and neuroscientists	
Identifying Neural and Physiological Pattern	ns of Fear, Northeastern University	09/2018 - Pres.
• Developed situation- and individual-de	pendent models of subjective experiences of	fear
• Designed, collected, preprocessed and	analyzed fMRI data	
• Collected, preprocessed, and analyzed	physiological data (ECG, ICG, Respiration,	EDA)
• Built neural predictors of fear using PC	CA, LASSO regression, and multivariate anal	ysis
Modeling social action conceptualization and	d prediction, Northeastern University	10/2020 - Pres.
• Designed experiment, created the video	o stimuli, collected INIRI and online data	
• Applied Reinforcement Learning mode	els and Hierarchical Gaussian Filters to data	06/2017 06/2019
How Motivations Influence visual Perceptio	on, Stanford University	06/2017 - 06/2018
Principle Investigator: Vuan Chang Leong Ph I) & Jamil Zaki Ph D	
Analyzed behavioral and mause tracki	D. & Jahini Zaki Fil.D.	
 Analyzed behavioral and mouse-tracking Fitted different variants of the drift diff 	fusion model to behavioral data	
• Filled different variants of the different difference in S	Cosial Croups University of Washington	11/2015 06/2017
Research Assistant Honor Student	octar Groups, University of washington	11/2013 - 00/2017
Principle Investigator: Anthony Greenwald Ph	D	
 Examined how mental rehearsal mitiga 	te implicit bias towards social groups through	h familiarity as a
potential intervention mechanism.		in remaining up u

SKILLS

Language: Python, Bash, MATLAB, R, Java, JavaScript Framework: PyTorch, TensorFlow, Docker, Singularity Courses: Deep Learning, Machine Learning, Cognitive Neuroscience, Bayesian Data Analysis, Fundamentals of Programming

PUBLICATIONS

Wang. Y., Kragel, P.A., Satpute, A.B. (under review, bioRxiv) Neural predictors of subjective fear depend on the situation.

Khan, Z.*, **Wang**, Y.*, Sennesh, E., Dy J., Ostadabbas, S., van de Meent, J.W., Hutchinson, J.B., & Satpute, A.B. A computational neural model for mapping degenerate neural architectures *Neuroinformatics* (2022) * equal author contributions

Sennesh, E., Khan, Z., **Wang, Y.,** Hutchinson, J.B., Satpute, A.B, Dy, J., & van de Meent, J. W. (2020). Neural topographic factor analysis for fMRI data. *Advances in Neural Information Processing Systems (NeurIPS)*, 33, 12046-12056.

Leong, Y.C., Hughes, B., **Wang, Y.,** & Zaki, J. (2019). Neurocomputational mechanisms underlying motivated seeing. *Nature Human Behavior*, https://doi.org/10.1038/s41562-019-0637-z

Selected Conference Posters

Wang, Y., McVeigh, K., Satpute, A.B Dynamic and static non-linear fMRI models have similar performance when predicting subjective fear, *Society for Affective Science 2023 annual meeting*

Wang, Y., Russo, D., Lane, R., Davidow, J,Y, Satpute, A.B. The neural basis of adopting the optimal conceptualization to predict actions. 2022 Social & Affective Neuroscience Society Conference

Wang, Y., Khan, Z., Sennesh, E., Dy J., van de Meent, J., Hutchinson, J.B., & Satpute, A.B. A Computational Neural Model for Mapping Degenerate Neural Architectures. *2021 BRAIN Initiative Meeting*

Wang, Y., Sambrano, D, Leong, Y.C., Jamil, J. Motivational biases in perceptual judgments: A mouse-tracking study. *2018 APS Annual Convention*

TEACHING EXPERIENCE

Lab in Cognition, Northeastern University	2021
Lab in Social Psychology, Northeastern University	2020
Statistical Inference, University of Washington	2017
Introduction to Statistics, University of Washington	2016

WORKSHOPS

Neuromatch Academy - Deep Learning	2022
Kavli Summer School in Cognitive Neuroscience	2019

HONORS & AWARDS

Kavli Fellowship for Summer Institute in Cognitive Neuroscience	2019
Annual Dean's list, University of Washington	2014 - 2015, 2016 - 2017
College Honors, University of Washington	2017